Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microlife ; 3: uqac003, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37223356

RESUMO

In the context of global warming, the melting of Arctic permafrost raises the threat of a reemergence of microorganisms some of which were shown to remain viable in ancient frozen soils for up to half a million years. In order to evaluate this risk, it is of interest to acquire a better knowledge of the composition of the microbial communities found in this understudied environment. Here, we present a metagenomic analysis of 12 soil samples from Russian Arctic and subarctic pristine areas: Chukotka, Yakutia and Kamchatka, including nine permafrost samples collected at various depths. These large datasets (9.2 × 1011 total bp) were assembled (525 313 contigs > 5 kb), their encoded protein contents predicted, and then used to perform taxonomical assignments of bacterial, archaeal and eukaryotic organisms, as well as DNA viruses. The various samples exhibited variable DNA contents and highly diverse taxonomic profiles showing no obvious relationship with their locations, depths or deposit ages. Bacteria represented the largely dominant DNA fraction (95%) in all samples, followed by archaea (3.2%), surprisingly little eukaryotes (0.5%), and viruses (0.4%). Although no common taxonomic pattern was identified, the samples shared unexpected high frequencies of ß-lactamase genes, almost 0.9 copy/bacterial genome. In addition to known environmental threats, the particularly intense warming of the Arctic might thus enhance the spread of bacterial antibiotic resistances, today's major challenge in public health. ß-Lactamases were also observed at high frequency in other types of soils, suggesting their general role in the regulation of bacterial populations.

2.
Viruses ; 12(11)2020 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-33171839

RESUMO

Marseilleviridae members are large dsDNA viruses with icosahedral particles 250 nm in diameter infecting Acanthamoeba. Their 340 to 390 kb genomes encode 450 to 550 protein-coding genes. Since the discovery of marseillevirus (the prototype of the family) in 2009, several strains were isolated from various locations, among which 13 are now fully sequenced. This allows the organization of their genomes to be deciphered through comparative genomics. Here, we first experimentally demonstrate that the Marseilleviridae genomes are circular. We then acknowledge a strong bias in sequence conservation, revealing two distinct genomic regions. One gathers most Marseilleviridae paralogs and has undergone genomic rearrangements, while the other, enriched in core genes, exhibits the opposite pattern. Most of the genes whose protein products compose the viral particles are located in the conserved region. They are also strongly biased toward a late gene expression pattern. We finally discuss the potential advantages of Marseilleviridae having a circular genome, and the possible link between the biased distribution of their genes and the transcription as well as DNA replication mechanisms that remain to be characterized.


Assuntos
Vírus de DNA/genética , Genoma Viral , Filogenia , Acanthamoeba/virologia , Sequência de Bases , DNA Viral/genética , Genômica , Análise de Sequência de DNA
3.
J Virol ; 94(8)2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-31996429

RESUMO

Microbes trapped in permanently frozen paleosoils (permafrost) are the focus of increasing research in the context of global warming. Our previous investigations led to the discovery and reactivation of two Acanthamoeba-infecting giant viruses, Mollivirus sibericum and Pithovirus sibericum, from a 30,000-year old permafrost layer. While several modern pithovirus strains have since been isolated, no contemporary mollivirus relative was found. We now describe Mollivirus kamchatka, a close relative to M. sibericum, isolated from surface soil sampled on the bank of the Kronotsky River in Kamchatka, Russian Federation. This discovery confirms that molliviruses have not gone extinct and are at least present in a distant subarctic continental location. This modern isolate exhibits a nucleocytoplasmic replication cycle identical to that of M. sibericum Its spherical particle (0.6 µm in diameter) encloses a 648-kb GC-rich double-stranded DNA genome coding for 480 proteins, of which 61% are unique to these two molliviruses. The 461 homologous proteins are highly conserved (92% identical residues, on average), despite the presumed stasis of M. sibericum for the last 30,000 years. Selection pressure analyses show that most of these proteins contribute to virus fitness. The comparison of these first two molliviruses clarify their evolutionary relationship with the pandoraviruses, supporting their provisional classification in a distinct family, the Molliviridae, pending the eventual discovery of intermediary missing links better demonstrating their common ancestry.IMPORTANCE Virology has long been viewed through the prism of human, cattle, or plant diseases, leading to a largely incomplete picture of the viral world. The serendipitous discovery of the first giant virus visible under a light microscope (i.e., >0.3 µm in diameter), mimivirus, opened a new era of environmental virology, now incorporating protozoan-infecting viruses. Planet-wide isolation studies and metagenome analyses have shown the presence of giant viruses in most terrestrial and aquatic environments, including upper Pleistocene frozen soils. Those systematic surveys have led authors to propose several new distinct families, including the Mimiviridae, Marseilleviridae, Faustoviridae, Pandoraviridae, and Pithoviridae We now propose to introduce one additional family, the Molliviridae, following the description of M. kamchatka, the first modern relative of M. sibericum, previously isolated from 30,000-year-old arctic permafrost.


Assuntos
Vírus Gigantes/classificação , Vírus Gigantes/genética , Vírus Gigantes/isolamento & purificação , Filogenia , Acanthamoeba/virologia , Vírus de DNA/classificação , Vírus de DNA/genética , Genoma Viral , Genômica , Vírus Gigantes/ultraestrutura , Mimiviridae/classificação , Mimiviridae/genética , Federação Russa , Microbiologia do Solo , Vírion/genética , Vírion/ultraestrutura , Vírus não Classificados/classificação , Vírus não Classificados/genética , Vírus não Classificados/isolamento & purificação
4.
Nat Commun ; 9(1): 2285, 2018 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-29891839

RESUMO

With DNA genomes reaching 2.5 Mb packed in particles of bacterium-like shape and dimension, the first two Acanthamoeba-infecting pandoraviruses remained up to now the most complex viruses since their discovery in 2013. Our isolation of three new strains from distant locations and environments is now used to perform the first comparative genomics analysis of the emerging worldwide-distributed Pandoraviridae family. Thorough annotation of the genomes combining transcriptomic, proteomic, and bioinformatic analyses reveals many non-coding transcripts and significantly reduces the former set of predicted protein-coding genes. Here we show that the pandoraviruses exhibit an open pan-genome, the enormous size of which is not adequately explained by gene duplications or horizontal transfers. As most of the strain-specific genes have no extant homolog and exhibit statistical features comparable to intergenic regions, we suggest that de novo gene creation could contribute to the evolution of the giant pandoravirus genomes.


Assuntos
Acanthamoeba/virologia , Vírus de DNA/classificação , Vírus de DNA/genética , Vírus de DNA/fisiologia , DNA Viral/genética , Microbiologia Ambiental , Evolução Molecular , Duplicação Gênica , Transferência Genética Horizontal , Variação Genética , Genoma Viral , Anotação de Sequência Molecular , Filogenia , Proteômica , Análise de Sequência de DNA , Vírion/ultraestrutura , Replicação Viral
5.
Syst Appl Microbiol ; 40(7): 401-410, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28890241

RESUMO

Staphylococcus sciuri is considered to be one of the most ancestral species in the natural history of the Staphylococcus genus that consists of 48 validly described species. It belongs to the basal group of oxidase-positive and novobiocin-resistant staphylococci that diverged from macrococci approximately 250 million years ago. Contrary to other groups, the S. sciuri species group has not developed host-specific colonization strategies. Genome analysis of S. sciuri ATCC 29059 provides here the first genetic basis for atypical traits that would support the switch between the free-living style and the infective state in animals and humans. From among the most remarkable features, it was noticed in this extensive study that there were a number of phosphoenolpyruvate:carbohydrate phosphotransferase systems (PTS), almost twice as many as any other staphylococci, and the co-occurrence of mevalonate and non-mevalonate pathways for isoprenoid synthesis. The sequenced strain was devoid of the main virulence factors present in Staphylococcus aureus, although it exhibited numerous heme and iron acquisition systems, as well as crt and aldH genes necessary for gold pigment synthesis. The sensing and signaling networks, exemplified by a large and typical repertoire of two-component regulatory systems and a complete panel of master regulators, such as agr, rex, mgrA, rot, sarA and sarR genes, depict the background in which S. aureus virulence genes were later acquired. An additional sigma factor, a distinct set of electron transducer elements and many gene operons similar to those found in Bacillus spp. would constitute the most visible remnant links with Bacillaceae organisms.


Assuntos
Genoma Bacteriano/genética , Oxirredutases/metabolismo , Staphylococcus , Transportadores de Cassetes de Ligação de ATP/genética , Sequência de Bases , Farmacorresistência Bacteriana/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Ácido Mevalônico/metabolismo , Novobiocina/farmacologia , Fenótipo , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/genética , Análise de Sequência de DNA , Fator sigma/genética , Staphylococcus/classificação , Staphylococcus/efeitos dos fármacos , Staphylococcus/genética , Staphylococcus/metabolismo , Terpenos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...